F-regular and F-pure rings vs. log terminal and log canonical singularities
نویسندگان
چکیده
منابع مشابه
Globally F -regular and Log Fano Varieties
We prove that every globally F -regular variety is log Fano. In other words, if a prime characteristic variety X is globally F -regular, then it admits an effective Qdivisor ∆ such that −KX −∆ is ample and (X, ∆) has controlled (Kawamata log terminal, in fact globally F -regular) singularities. A weak form of this result can be viewed as a prime characteristic analog of de Fernex and Hacon’s ne...
متن کامل0 Log - Canonical Forms and Log Canonical Singularities
For a normal subvariety V of C with a good C∗-action we give a simple characterization for when it has only log canonical, log terminal or rational singularities. Moreover we are able to give formulas for the plurigenera of isolated singular points of such varieties and of the logarithmic Kodaira dimension of V \{0}. For this purpose we introduce sheaves of m-canonical and L2,m-canonical forms ...
متن کاملThe Indices of Log Canonical Singularities
Let (P 2 X; ) be a three dimensional log canonical pair such that has only standard coe cients and P is a center of log canonical singularities for (X; ). Then we get an e ective bound of the indices of these pairs and actually determine all the possible indices. Furthermore, under certain assumptions including the log Minimal Model Program, an e ective bound is also obtained in dimension n 4.
متن کاملLog Canonical Singularities and Complete Moduli of Stable Pairs
0.1. This paper consists of two parts. In the first part, assuming the log Minimal Model Program (which is currently only known to be true in dim ≤ 3), we construct the complete moduli of “stable pairs” (X,B) of projective schemes with divisors that generalize the moduli space of n-pointed stable curves Mg,n to arbitrary dimension. The construction itself is a direct generalization of that of [...
متن کاملF-rational Rings Have Rational Singularities
It is proved that an excellent local ring of prime characteristic in which a single ideal generated by any system of parameters is tightly closed must be pseu-dorational. A key point in the proof is a characterization of F-rational local rings as those Cohen-Macaulay local rings (R; m) in which the local cohomology module H d m (R) (where d is the dimension of R) have no submodules stable under...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Algebraic Geometry
سال: 2002
ISSN: 1056-3911,1534-7486
DOI: 10.1090/s1056-3911-01-00306-x